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ABSTRACT
For the first time, the transient hot wire (THW) and the transient hot strip (THS)

techniques were used to measure the thermal conductivity and thermal diffusivity of solid and the
thermal conductivity of liquid H2O simultaneously in one run. With the additional knowledge of
the thermal diffusivity of water from a subsequent single phase run, the latent heat of melting can
be determined as well as the time dependent position of the interface between both phases during
an experiment. The results of the dual phase measurements are compared with those obtained in
the single phase experiments using the same simple set up. The composite THS and THW
signals are interpreted based on the underlying phase-change-theory of Stefan and Neumann, as
outlined briefly in the text.

KEY WORDS: ice, latent heat, melting, phase transition, transient hot strip, transient hot wire,
thermal conductivity, thermal diffusivity, water
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1. INTRODUCTION
The Transient Hot Strip (THS-) method is known well as a fast technique to measure

simultaneously the thermal conductivity and thermal diffusivity of solids [1]. For liquids, so far
only Gustafsson et al. [2-5] and Groß et al. [6] reported on this technique.

State of the art for measuring both mentioned thermal transport properties of liquids is the
Transient Hot Wire (THW-)technique (cf. e.g., [7], [8]). This closely related method uses a wire
in place of the strip as the sensor. From this arrangement substantial advantages arise: First, the
underlying mathematical model of the (one-dimensional) wire is not as complex as that of the
(two-dimensional) strip and the corrections to it are much better understood. Secondly, the
linearized THW model enables the isolation of non-conductive mechanisms of heat transfer such
as convection. For fluids the THW method is accepted worldwide as the most accurate technique.

However, to set up a THW apparatus is a difficult and troublesome task: To meet the one-
dimensional model, the radius of the wire has to be as thin as possible. It has to be maintained
straight and under slight tension but without stretching it. Moreover, a complex peripheral
instrumentation is needed for the most precise THW cells which consist of two wires of different
length in a Wheatstone bridge arrangement. This circuit has to be adjusted and operated
thoroughly. By contrast, the strip of a THS experiment is easily to be fixed within a measuring
cell (cf. Fig. 2). Moreover, the width of the strip may be choosen out of a relatively wide range
up to 12 mm. The strip works properly in a simple four wire circuit, to be connected to a DVM
and a constant current source only. Moreover, as Groß et al. noted in [5], the electrical
conductivity of a substance under test may be greater by two orders of magnitude than for the
THW method, because of the strip’s larger ratio of cross section and length. From the same
geometrical reasons, the onset of convection can be significantly later than in a THW experiment
because of the smaller heat flow density at the surface of the strip (cf. sect. 3.)

However, within the framework of the THS nonlinear mathematical model the nonlinear
phenomena convection could not be detected. This major drawback of the THS method for fluids
can now be circumvented by evaluating the THS signal by the recently developed linearized
model [9] or by a combination of this procedure with the nonlinear estimator [10]. On the basis
of the linear approximation, a new experimental attempt has been made to implement the THS
method to a liquid. Water was taken as the sample for two reasons: First, its thermal transport
properties are known well [11], [12] and, secondly, water can easily be measured in the solid
state too.

After a brief review of the THW and THS models, the present paper deals with
measurements of the thermal conductivity and thermal diffusivity of H2O at temperatures from
-20 °C to +20 °C. Composite THS and THW signals are presented which were observed while
the sample changes its phase at the freezing point, induced by the heat liberated from the strip or
the wire. From these signals the thermal transport coefficients can be derived simultaneously for
the liquid and the solid state around 0 °C.

Till now, the theory of heat conduction with progressive melting is derived for planar,
line (THW), and spherical heat sources only. To analyze our THS signals, a specific
approximation to the line source solution was derived.

2. THEORY
A line or semiinfinite strip heat source of specific strength const.=LΦ  is surrounded by

a dielectric initially at uniform temperature 0TT = . The resulting time dependent temperature rise

at a cylindrical surface at a distance r from the reference axis ( 0=r ) is governed by:

( ) ( ) ( )( )atrf
L

TtTtT ,,
2

0 τ
λ

Φ ⋅
π

=−=∆ (1)
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The signal ( )tT∆  is a measure of the thermal conductivity λ and thermal diffusivity a of the
sample (e.g., [1], [7]). In a transient hot wire (THW) and transient hot strip (THS) experiment the
temperature excursion ( )tT  is monitored in time t as the voltage drop ( )( )tTU  across a current-

carrying metal wire of radius 00 →= rr or strip of thickness 0→ν  and width D

( )( ) ( )





⋅

π
+= τ

λ
α f

L

IU
UtTU

2
1 0

0 (2)

The initial voltage drop U0  is observed at time zero. α  denotes the temperature coefficient of

the electrical resistance of the sensor (wire or strip) of length L. ( )τf  specifies the shape of the

signal and is called the sensor function. For a wire, ( )τf  reads

( ) ( ) ( )2
rr -Ei

4

1 −

π
−== τττ ff (3)

where the nondimensional time is defined by

0
r

4
= 

r

atτ . (4)

For a strip

( ) ( ) ( ) ( )[ ] ( )2-
D

2-
D

2
D1-

DDD -Ei
4

1
exp1

4
erf τττττττ

π
−−−

π
−== ff (5)

is valid where

D

at4
= Dτ . (6)

Both sensor functions are nonlinear and implicit in real time t. For practical purposes ( 12 <<−τ ),
first-order approximations which are linear in tln  can be obtained. They are based on the related
series expansions of Eq. (3) and Eq. (5), respectively. ( )rτf  can be expressed as

( ) ( )2
rr ln

2

1 τγτ +−
π

≈f . (7)

Here, γ = 0 5772. ...  (Euler’s constant). In the case of the THS technique, the quasilinear
approximation

( ) ( )2
DD ln3

2

1 τγτ +−
π

≈f (8)

is valid. Substitution of Eq. (7) and Eq. (8), respectively, into Eq. (2) results in
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for the THW method (superscript "W") and

( ) ( ) ( ) SS
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α

. (10)

for the THS technique (superscript "S"). Here, C = expγ . In both cases, the expression that

governs the slope of the line segment, m, takes the form λα LIUm π= 42
0 . The intercept is given

with ( )2
0

WW 4ln rCamn =  for a wire and ( )2S
D 4ln3 CDamn +=  for a strip. From these

coefficients both measurands follow as

λ α= U I

Lm
0
2

4π
(11)

and
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The ideal model, Eq. (1) is valid for all times because of an unbounded sample. In practice, the
valid time domain of Eq. (1) is set at its lower end, mint , by the characteristic length of the sensor,

0rr =  and Dr = , respectively and at its upper end, maxt , by the finite outer radius 0Rr =  of the

cylindrical sample. The available measurement time [ ]maxmin ,tt  can be located by the upper and

lower curved portions of the temperature vs ln time graph. For small times, all data points which
deviate by more than % 5.0=ε  from the ideal straight line fit are discarded from all subsequent
analysis. Therefore, the lower end point is set to be 6r(min) =τ  for the wire  [14] and 2D(min) =τ  for

the strip  [9]. It then follows from Eqs. (4) and (6), respectively, that a linear segment does not
start in real time before

a

r
t

2
0W

min

9≥ (14)

and

a

D
t

2
S
min ≥ , (15)
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repectively. For both techniques, the upper end point maxt  is proportional to the ratio of the

square of the outer radius 0Rr =  to the thermal diffusivity a [15, 16]:

a

R
ct

2
0

max < (16)

For the THW technique, the constant c has to be chosen out of the range ( ) 417.0 Cc << ε
depending on the approximation error ε  [15]. A finite elements analysis performed recently [16],
confirms this c-range. Furthermore, as long as DR 30 ≥ , the range mentioned is valid for the time

S
maxt  of THS signals too. Correspondingly for both techniques, it is found, that 2.0=c  causes a

deviation % 5.0=ε .
From a formal point of view, the working equations of the THS and THW methods,

Eqs. (9) and (10), are very closely related. Substituting the linearized THS-sensor function,
Eq. (8), into Eq. (1) and assuming that S

0
W
0 UU =  and Dr =0  one obtains for the temperature rise

of the strip

( ) ( )tTTT
L
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++=

4π
+

π
+=





 ++

π
+≈

λλλ
(17)

where const.c =T  From the right hand side of Eq. (17) it is obvious that the THS signal is equal

to the THW signal plus the constant offset-temperature cT . Considering a line heat source at

0=r  for both techniques, the virtual temperature station is at 0rr =  for the THW method and at

Dr =  for the THS technique. In other words, the linearized electrical signal of the strip, may be
interpreted like a THW signal that is shifted by a constant offset voltage λα LIUU π= 43 2

0off .

This effect alters the intercept n, however, it does not alter the slope m (cf. Eq. (11)).

2.1. Phase-Change Problem
Unlike steady state techniques which operate at a constant working temperature, TW ,

transient methods to determine the thermal conductivity involve a time dependent increase in
temperature of the sample. This temperature rise can be used to induce a phase transition of the
sample during a run while measuring its thermal transport properties λ and a of H2O.

 The theoretical analysis of heat conduction with progressive freezing or melting is very
difficult because of the moving interface between the solid and the liquid phases. Here, latent
heat, H, is absorbed or liberated permanently. Stefan [17] was the first to discuss the problem of
the formation of ice by a planar heat sink (“Stefan’s problem”). Neumann [18] solved this two-
phase problem exactly and in closed form. For a line heat sink of constant strength Φ L , as
mentioned above, a solution is given by e.g. Özisik [19]. His analysis of a one-dimensional
transient phase-change problem can be taken as a basis for our two-phase problem of a strip heat
source.

As has already been shown above, for a given time window [ ]maxmin ,tt , the strip heat

source acts most similar to a line source. Therefore, first Özisik’s heat sink solution has to be
transformed to a heat source solution, and, secondly, it has to be rearranged formally to a
working equation for THS conditions that applies to our experimental results. Hence, it is
sufficient here to solve the phase-change problem for the simpler arrangement of a line heat
source as specified in sect. 2. Here, T0  is signifcantly lower than the melting temperature MT .
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The solution, ( )trT , , can be found by specifying the two physically distinct parts of the
system (solid, liquid) by individual Fourier field equations. Two phases are initially present:

liquid:
( )
t

trT

ar

T
r

rr ∂
∂=







∂
∂

∂
∂ ,11 L

L

L in ( )0 0< < >r s t t,  (18)

solid: 
( )
t

trT

ar

T
r

rr ∂
∂=







∂
∂

∂
∂ ,11 S

S

S in ( )s t r t< < ∞ >,  0 (19)

All quantities pertaining to the liquid and to the solid are denoted by subscripts "L" and "S",
respectively. ( )tsr =  is the time-dependent position of the moving boundary (interface). Eqs.
(18) and (19) do not include neither natural convection nor heat transport by the hydrodynamic
flow of the liquid due to the difference in density between ice and water. Both effects do not
interfere significantly during the experimental runs. The nature of the problem involves the
following boundary conditions:

( ) 0S , TtrT → as r t→∞,  > 0 (20)

( ) 0S , TtrT = as t r= 0,  in > 0 (21)

On the interface, temperatures of both phases are equal to the melting temperature, MT :

( ) ( ) MLS ,, TtrTtrT == at ( )r s t t= ,  > 0 (22)

Here, at ( )s t , the nonlinear heat balance can be written as

( )
t

ts
H

r

T

r

T

d

dS
S

L
L ρλλ =

∂
∂−

∂
∂

at ( )r s t t= ,  > 0 (23)

As mentioned, the densities of the liquid, Lρ , and the solid phase, Sρ , are considered to be

uniform, ρρρ == SL .  H denotes the specific latent heat of melting which is continuously

absorbed at the progressing interface. Already in Neumann’s derivation, it is pointed out that for
the solution to satisfy the conditions for all time, this position had to be given by

( ) tats L2δ= (24)

where δ  is a proportionality constant. Eqs. (18) and (19) are satisfied by:

( ) ( )







−−





−

π
−= 2

L

2

L
ML Ei

4
Ei

4
, δ

λ
Φ

ta

r

L
TtrT in ( )0 < <r s t (25)

( ) 





−







−

−−=
ta

r

a

a

TT
TtrT

S

2

S

L2

M0
0S 4

Ei

Ei

,

δ
in ( )s t r< < ∞ (26)

The constantδ can be obtained when Eqs. (25) and (26) are introduced into the interface balance
equation (Eq. (23)).
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This transcendental relation has to be solved in graphical form. Eqs. (25) and (26) reduce to their
basic form, respectively, for opposite cases of ( )ts :

( ) 





−

π
−=

ta

r

L
TtrT

L

2

L
ML 4

Ei
4

,
λ

Φ
in ( ) ∞→ts (28)

because δ  also tends to infinity and ( ) 0Ei 2 →−− δ . Rearranging Eq. (29) results in

( ) ( )
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−
π
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a
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a

TT
C

δλ

δΦρδ

δ
(29)

For ( ) 0→ts , δ  vanishes too. Thus, the right hand side of Eq. (29) becomes S4 λΦ LC π−= and

Eq. (26) reduces to:

( ) 





−

π
−=

ta

r

L
TtrT

S

2

S
0S 4

Ei
4

,
λ

Φ
in ( ) 0→ts (30)

The two cases of one-phase and two-phase systems are shown in graphical form in Fig. 1. Both
parts of the curve denoted "2-phase system" were calculated for the same r value.

As will be shown later (cf. section 3.), our basic experiments are governed by Eq. (25)
which is valid for the "inner range". Here, the temperature station is virtually located at

( )tsDr <=<0  for the strip and ( )tsrr <=< 00  for the wire. The boundary condition involved

is given with Eqs. (22) and (23). It is the situation of a "progressing (outer) isothermal boundary"
( const.M ==TT ) which is continuously driven outward by the heat flow emitted by the wire,

practically as long as maxtt ≤ .

As has been done to Eqs. (3) and (5), Eqs. (25) may be approximated to

( ) 






 +




+

π
−= δγ

λ
Φ ~4

ln
4

, 2
L

L
ML r

ta

L
TtrT (31)
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The line segment of the THW voltage signal is specified by

( )( ) ( ) ( ) WW
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L

2W
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lnln
4

ntm
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a
t
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Here, ( ) const.Ei
~ 2 =−−= δδ  and ( ) const.M

W =TU . Slope mW and intercept W~n are specified by

( ) λα LIUm π= 4
2W

0
W  and ( )2

0
W 4ln

~~ Cramn W += δ . Hence, thermal conductivityλ and thermal

diffusivity a  of the liquid phase are then

( )
W

2W
0

L 4 Lm

IU

π
= αλ (34)

( )







−= H

m

nCr
a δ~

~
exp

4 W

W2
0

L (35)

Obviously, the determination of Lλ from a THW phase change experiment is not affected by the
latent heat, H. However, in the case of the thermal diffusivity it is. Physically, the thermal
diffusivity can be considered as the ratio of the energy conducted to the energy stored per unit
volume. While the energy conducted, .const=Φ , is not altered by the phase change, the stored
energy is increased during melting because of the latent heat per unit volume, ( Hρ− ).

Additional experiemnts were performed by the simultaneous use of a second temperature
station which is fixed 10 mm apart from the hot wire or hot strip (cf. Fig. 2). This "cold wire" can
sense within the "outer range", ( ) ∞<=< 1Rrts , where the temperature ( )trT ,S  is governed by

Eq. (26). Here, it is the situation of a "progressing inner isothermal boundary" ( const.M ==TT )
which is continuously driven from the center against the cold wire. Eq. (26) may be
approximated to

( )( ) ( ) WW

1

SM
WW

0W
0

W ˆ
4

lnln
ˆ

ntm
CR

a
t

TUU
UtTU +′=





+−−≈−

δ
(36)

provided 14 S1 <<taCR . It now follows for the amplitude factor 





−=

S

L2Eiˆ
a

aδδ

( )
W

M
WW

0

ˆ
ˆ

m

TUU −=δ (37)

and for the thermal diffusivity of the solid phase







= W

W
1

S ˆ
exp

4 m

nCR
a (38)

So far, the phase-change problem has been solved for a line heat source. From formal
considerations, it can be shown that

( )( ) ( ) ( ) SS
2

L

2S
0

M
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lnln3
4

ntm
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a
t

L

IU
TUtTU +′=





 +++

π
≈− δ

λ
α

(39)

is the approximate solution for a THS experiment which corresponds to Eq. (33). The
measurands are to be evaluated from
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( )
S
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L 4 Lm

IU

π
= αλ (40)

and

( )







−−= H

m

nCD
a δ~3

~
exp

4 S

S2

L (41)

3. EXPERIMENTS
The experiments were performed on the triply distilled deionised normal water/ice system

at atmospheric pressure and temperatures between -20 °C and +20 °C. Before measuring, the
water was boiled for several minutes to remove dissolved air from the liquid.

The sample is contained in a tubular cell made from stainless steel. The volume change
that accompanies the phase change was accomodated by filling the cell with water only up to the
flange (e). Then, a reservoir (f) remains for the excess of H2O during freezing. This arrangement
prevents the development of destructive pressures during freezing. The intake or outflow of
water to or from the metering region during a run is exceedingly slow and generally does not
disturb the heat transfer pattern inside.

The cell has a length of 210 mm and an inner radius R0 25=  mm  (Fig. 2). (There is

another cell made from plastics having the same length but a greater inner radius of mm 450 =R .

We used it to verify for the upper end time maxt  and to detect the onset of convection.) Parallel to

the longitudinal axis of each tube, a Platinum strip (d) of 125 mm length, 3 mm width, and
0.01 mm thickness is mounted. Optionally, a wire of the same length and a radius mm 125.00 =r

can be fixed. The current sensor is maintained straight by four tensioning springs (stainless steel)
(b) which themselves are supported by lead-throughs (a). Each lead-through additionally acts as a
voltage or current terminal for the four wire electrical circuit of the sensor (single sensor
measurements). At a precisely adjusted distance of mm 101 == rr  from the longitudinal cell

axis, the "cold wire" (g) of radius mm 125.00 =r  can be mounted. Its purpose is to measure the

temperature at a known position between the main sensor and the container wall (dual sensor
measurements). Both sensors are connected to their nanovoltmeter and constant current source.
The current sources also operate as measuring devices. All four instruments are controlled by a
PC. A calibrated platinum resistor Pt 100 measures the working temperature to ±0.01 K. The cell
is completely immersed in a thermostated bath that controls the fluid temperature to ±0.1 K.

The most important advantage of a hot strip instead of a hot wire as the main sensor is its
greater mechanical strength. The wire "survives" at most three cycles of freezing, melting and
freezing before it is broken while the strip endures more than 20.

Beginning at time zero, a constant electrical current I out of the range from 0.8 to 1.5 A for the
wire and up to 5 A for the strip is passed through the sensor while the voltage drop is recorded at
a sampling rate of 14 s-1.

For the single phase measurements, the current is adjusted so that the maximum
temperature rise of the strip does not exceed 2 K. For each constant working temperature TW  and

strip/wire current I, three successive runs were performed. Each data set, ( )∆U t I Ti w, , was then

analysed and the mean value taken as the result. The evaluation of the THS data on ice follows
the linear procedure (LP) as described briefly above and in some length in [9]. A typical THS
signal plot, showing the strip’s excess temperature vs the natural logarithm of time (ln t), is given
with Fig. 3 for ice at -5 °C. The signal can be divided into three distinct intervals, two outer
curved ones, indicated as “S1“ and “S3“, and an inner linear one, “S2“. The latter interval begins
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at s 5.72.1/9S
2i

min === aDt  and ends at s 5.3372.1452.02.0 2
S

2
0max =⋅== aRt i . This segment

of slope m and intercept n is taken to evaluate the thermal transport properties λ and a of the
sample from Eqs. (11) and (13). For both nonlinear segments “S1“ and “S3“, the approximation,
Eq. (10), does not apply. In a similar manner, this behaviour can be observed for practically any
effect that is not linear in ln t, e.g., in the case of a fluid, convection (cf. Figs. 4 and 5). In
contrast to the THS signals obtained on ice, those monitored on water had to be analysed by the
Levenberg-Marquardt (LM) nonlinear regression procedure [10] for the following reason: Within
the temperature range covered, the thermal diffusivity of ice is -12

S smm 2.1≈a  while for water

this transport property is smaller by one magnitude, -12
L smm 1.0≈a . For the lower and upper

end point of the linear signal segment, it follows from Eqs. (15) and (16) that for ice s 5.7i
min ≈t

and s 337i
max ≈t  (cf. Fig. 3) whereas for water s 90w

min ≈t  and s 4000w
max ≈t . The latter result is

valid for ideal conditions only, i.e. at the absence of convection. However, we observed the onset
of convection e.g., at C 5 o=T  at s 30S

conv ≈t  for the THS technique (Fig. 4). Since w
minconv tt < ,

those signals can not be analysed by the linear method. For the THW technique, the onset of
convection at C 5 o=T  is at s 10W

conv ≈t  (Fig. 5, incl. undisturbed cold wire signal). But, here, the

line segment begins earlier because Dr <<0 , (cf. Eqs. (14) and (15)).

All dual phase runs were started on ice at a constant uniform working temperature, WT . A

constant current was fed to the sensor, large enough (1.) to induce a phase transition after at least
10 s and (2.) to subsequently produce a linear signal portion of sufficient length on water.

The ISO standard uncertainty of a THS measurement on dielectric solids like e.g., ice has
recently been assessed [14]. The results differ only slightly for the linear and the nonlinear
evaluation procedure. For the thermal conductivity the value ( ) % 8.42 S =λu  was found while for

the thermal diffusivity ( ) %222 =au  is valid. For the ISO uncertainty of the THW method on

solids, a paper is to be submitted ( ( ) % 2.52 S =λu ).So far, the THS and THW ISO uncertainties
for our measurements on fluids have not been assessed yet (cf. Fig. 6). As a first estimation, the
above mentioned values can be adopted.

4. RESULTS
4.1. Single Phase Measurements

Prior to the dual phase measurements, single phase runs on H2O were performed to check
the validity of our THS set up, especially for fluids. Figs. 6 and 8 represent the results on the
thermal conductivity and thermal diffusivity, respectively. Both transport properties are plotted
vs temperature between -20 and 20 °C. Each diagram additionally shows comparative results
from literature: Concerning the thermal conductivity, the guarded hot plate (GHP) data of
Touloukian et al. [11] were additionally plotted along with the transient hot wire (THW) data of
Ratcliffe [12] and Ramirez et al. [13]. The latter claim an uncertainty of 0.5 % for their new
standard reference data set on liquid  H2O. Graphical comparison is made with reference data
sets in Fig. 7. For ice the maximum deviation from our data is -1.22 % whereas for water the
departure does not exceed 0.7 %. This is an excellent result regarding our above mentioned
uncertainties.

For the thermal diffusivity, the ISO uncertainty (2u) of our instrument is not better than
22 % for solids (error bars in Fig. 8) [11]. Accordingly, our data set on ice diverges significantly
from those of Touloukian et al. [12] and James [15]. James stated an uncertainty of 7 % (error
bars in Fig. 8) for his data on solid and liquid water. Nevertheless, for liquid water a deviation of
6.5 % in maximum of our data from the others is fairly good for a thermal diffusivity data set
originating from THS measurements.
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4.2. Dual Phase Measurements
As has been outlined first in [9] the linearized THS method is capable of measuring the

thermal transport poperties of composite media consisting of two layers having an interface at a
fixed position but of transient temperature. A two-phase system like water and ice can be treated
as a composite media too, however, here the interface has a fixed temperature but it moves. It is
that characteristic of a two phase composite media which allows to solve the underlying
differential equation in closed form (cf. sect. 2.1.).

H2O has been taken as the sample fluid for the reasons oulined in sect. 1. Furthermore, for
these first experiments, it was very important to select a substance of only slightly varying
thermal transport properties over the range ( 15C5 o

M ≤≤− T ). Dual phase measurements were
carried out using the THS method in single sensor mode, (dual sensor mode THS experiments
are planned) and the THW technique in dual sensor mode (hot and cold wires).

 A typical composite THS signal is shown in Fig. 9. Fig. 12 represents a typical THW
signal where the cold wire signal is additionally plotted (dual sensor measurement).

For the THS signal (Fig. 9), the working temperature is -3 °C and the constant current I
fed to the strip is 5 A. This combination leads, after 13 s of heating the ice (linear segment:
"L1"), to a maximum excess temperature of the strip just at the transition temperature. Now,
melting of the sample is initiated from the hottest part of the strip, its centre, and propagates up
and downwards along the longitudinal axis of the strip and to its edges. At the latest, at

s 180(min) =Lt , the strip is completely immersed within a cylinder of water of radius Dr ≈ . At

this fictitious nondimensional time 2f =τ  (cf. sect. 4.2.1. for "melt-lag"), the second linear
segment ("L2") commences. It does not end before the thermal wave front reaches the container
walls. The signal segment between the two linear portions "L1" and "L2" can precisely be
expressed in terms of a polynomial of second degree in time ("P").

By playing with the working temperature and/or the electric current Φ∝I , fed to the
sensor, one can perform THS and THW experiments in which the heat liberated by the current
sensor induces and maintains a melting of the ice or another material. For ice, this has been done
for different combinations of temperature and/or current, (Fig. 10).

4.2.1. Evaluation of Single Sensor Signals
To illustrate the analysis of a composite THS/THW single sensor signal on H2O, Fig. 11

was calculated using the theory as outlined above. The dashed curve (denoted "water"), starting
at C 0 o

W =T , indicates the signal of a single phase measurement on water, Eq. (2). The signal of

the same measurement on a solid substance like ice (but having no phase transition) is
represented with the solid/dotted curve (denoted "ICE" and "ICE cont."), starting at C 5 o

W −=T ,

Eq. (2).
The dotted/solid curve, starting at C 8.1 o

W −=T , (denoted "ice-water (cont.)", and "ice-

water") shows the signal of a two phase measurement on H2O where the solid, Eq. (26), and the
liquid, Eq. (25), phases are initially present. The solid/solid curve indicates a typical signal to be
observed in our measurements starting at e.g., C 5 o

W −=T . At this temperature, only one phase

of H2O is initially present. Hence, the signal, denoted "ICE", is monitored first, Eq. (2). It exists
as long as the sensor temperature does not approach ( ) C 0 o=tT . This case is identical to the

limit ( ) 0→ts , Eq. (30). From slope and intercept of the straight line (THS signal "L1" in Fig. 9,

THW signal "L1a" in Fig. (12)), Sλ and Sa of ice can be calculated.
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With the start of melting, the signal, denoted "ice-water" is observed. Now, two phases
are concurrently present, the temperature profile within the liquid phase, LT  is established

beginning at MT . The interface is located at ( ) 0rtsr >=  for a THW and ( ) Dtsr >=  for a THS

experiment. Hence, after a transformation in time by the melt-lag t∆  (cf. e.g., Figs. 9 and 12), the
temperature of the sensor, ( )ttrT ∆−,0 , is specified by Eq. (25). t∆  is the period to account for

the time required to form a film of water around the sensor. From the slope of the straight line
(THS signal "L2" in Fig. 9, THW signal "L1b" in Fig. (12)), Lλ  of water can be calculated. The

thermal diffusivity La of water can only be derived from the intercept of the lines mentioned
when the latent heat is known. Or, vice versa, the latent heat of melting can be calculated with
the knowledge of La .

4.2.2. Evaluation of Dual Sensor Signals
In the single sensor experiments only the cases ( ) 0→ts  and ( )tsr <<0  (cf. Fig. 1) can

be observed. In order to monitor all five cases mentioned above (cf. sect. 2.1.), a second
temperature sensor, the "cold wire" was used at 1rr =  in conjunction with the hot wire. Now, the

missing situations ( )s t r< < ∞ , ( ) ∞→ts , and ( ) 1rts =  (cf. Fig. 1) can be realized too. The cold

wire signal of a bounded sample (radius 0R ) is practically limited in time by the same restriction

as the hot wire signal, Eq. (16): aRut 2
0max < . However, there is a certain delay in time

depending on the mutual distance of both wires, 1r . This propagation delay, max1max221 ttt −=∆ − ,

can be derived as e.g., s 208s 373s 58121 =−=∆ −t  from Fig. 12.

The first of the above mentioned cases, ( ) 0→ts , is valid for ice. From slope and

intercept, Sλ and Sa  can be determined. This case is represented in Fig. 12, curve 2 and Fig. 13,

curve 1. The latter diagram comprises all three typical cold wire signals, obtained from three
different runs.

The fifth situation, the other limiting case ( ) ∞→ts , is shown in Fig. 13, curve 3. Here,
the transport properties of water can be derived from the signal.

The second and third cases, ( )tsr <<0 , ( )s t r< < ∞ , respectively, can be seen from

Fig. 13, curve 2a and curve 2c, respectively. Curve 2b is associated to the phase transition,
( ) 1rts = , the fourth case. Surprisingly, in contrast to the THS signals, the THW signals of the hot

and the cold wires show a "step" (Figs. 12 and 13: dotted rectangles) at the phase transition
temperature. This characteristic behavior is not completely understood yet.

4.2.3. Results
The single phase experiments demonstrate that a simple THS instrument can be applied

to measure the thermal conductivity not only of solids but also of fluids. The uncertainty
compares to THW instruments which, however, are much more complicated to set up and to
operate. The onset of convection is later for a THS than for a THW instrument, providing the
same experimental conditions.

As a first result of the dual phase experiments using both transient techniques mentioned,
the thermal transport properties Sλ  and Sa for ice and Lλ  for water can be obtained from one

single run. These values differ only slightly ( % 1± ) from those furnished by the single phase
experiments. With the additional knowledge of La the volumetric latent heat of melting, Hρ , of
H2O and the constant δ  for the actual experiment can be calculated. For H we found 300 kJ/kg
which is a fairly good value ([11]: 333 kJ/kg). For e.g., the THS signal depicted in Fig. 9, δ  is
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determined to be 0.48. From this value, the time dependent position of the interface, ( )ts ,
between the two phases can be calculated.

A second result of the dual phase measurements is that the results are in complete
agreement with the underlying theory.

5. SUMMARY
For the first time composite THW and THS signals have been observed which are

monitored while the sample, H2O, undergoes a phase transition from the solid to the liquid state.
The apparatur used for these investigations is straightforward and simple to operate. Concerning
the measured thermal conductivities of both phases, the results are in excellent agreement with
those from literature. The value obtained for the latent heat is fairly good. However, till now THS
is not the method of choice to precisely measure the thermal diffusivity of fluids.

It has been shown, that such experimental investigations can generally provide useful
information for a lot of engineering applications like the melting of frozen food, thermal energy
storage, or casting and welding of plastics.
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Fig. 1: Calculated temperature excursion for a solid and a liquid one-phase system and a two-
phase system, the latter one during phase change (see text). s(t) denotes the time dependent
position of the phase boundary relative to the temperature station at r in cylindrical geometry.
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Fig. 2: Section through the PTB stainless steel THS/THW cell: a lead-through b tensioning
spring c flexible potential or current lead d strip (or wire) e flange f excess volume (lid)
g "cold wire"
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Fig. 3: Typical linearized THS voltage signal for ice (see text).

Fig. 4: Linearized THS voltage signal measured on water disturbed by convection for times
above 30 s.
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Fig. 5: Linearized THW voltage signal (curve 1) measured on water disturbed by convection
for times above 10 s. Curve 2 represents the undisturbed "cold wire" voltage signal obtained
simultaneously. tmax indicates the upper end of the measurement interval (see text).

Fig. 6: Thermal conductivity of solid and liquid H2O vs temperature as measured by the THS
method [PTB], the THW method [12], [13] and a Guarded hot plate apparatus [11].
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Fig. 7: Deviations of data sets selected (see text) from PTB THS data (baseline) on the
thermal conductivity of H2O (cf. Fig. 6).

Fig. 8: Thermal diffusivity of solid and liquid H2O vs temperature as measured by the THS
method [PTB], the THW [11] and the Angström methods [20] (see text).
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Fig. 9: Composite THS temperature signal for a solid-liquid phase transition of H2O. "L1"
and "L2" are linear fits while "P" is a quadratic polynomial fit.

Fig. 10: Composite THS temperature signals measured with different electric currents fed to
the strip. Curves 1 ... 5 are obtained for solid-liquid phase transitions of H2O.
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Fig. 11: Calculated temperature vs time curves for different phase conditions of H2O during a
phase change experiment (see text).

Fig. 12: Composite THW voltage signal for a solid-liquid phase transition of H2O (curve 1).
Curve 2 represents the "cold wire" voltage signal monitored simultaneously (see text).
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Fig. 13: "Cold wire" voltage signals from three different runs (1, 2, and 3) on the solid-liquid
phase transition of H2O (see text).
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